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Preface

So far, as we known, the theory of a holomorphic function has not only reached
its fullness and beauty in terms of structure but also enriched many applications in
different fields.
In the theory of partial differential equations sense, the theory of a holomorphic
function is essentially the theory of the solution of the following Cauchy-Riemann
system. 

∂u

∂x
− ∂v

∂y
= 0

∂u

∂y
+
∂v

∂x
= 0.

(1)

The real part and imaginary part of the holomorphic function f(z) = u + iv are
harmonic functions. But not with any two harmonic functions u and v, then u+ iv
is a holomorphic function: They must be pairs of harmonic functions associated
together by a specified rule (conjugate rule). Here, the conjugate rule is the Cauchy-
Riemann condition.
The ideas of complex analysis started in the middle of the 18th century, first of all
in connected with the Swiss mathematician, Leonhard Euler, and its mainly results
in the 19th century have introduced by Augustin-Louis Cauchy, Georg Friedrich
Bernhard Riemann and Karl Theodor Wilhelm Weierstrass.
As more and more new problems emerge from the realities that need to be solved,
more research has been done to expand the Cauchy-Riemann system (which is also
an extension of the theory of a holomorphic function). Looking back at these expan-
sions, one can see that, the authors find several ways, linking the harmonic functions
together.
As we known, to defined a holomorphic function in complex variable, there must
be two harmonic functions which are adjoined together by the Cauchy-Riemann
condition.
It neccessary to solved following problems: Is there any way to presented the Cauchy-
Riemann condition in a succinct and concise way, directly to the function f(z) does
not depending on the real part and imaginary part?
Dimitrie D. Pompeiu was able to discover that way in 1912 when he proposed the
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new definition about “aréolaire derivative” (surface derivative) (see [1a] and [20]).

∂f

∂z
(z0) = lim

γ→z0

1
2i

∫
γ

f(z)dz

mesG
(2)

where G is arbitrary domain which contains a point z0 and the boundary of the
domain G is a curve γ, f(z) is continuously function. If f ∈ C1 then from equation
(2), we obtain:

∂f

∂z
=

1

2
(
∂f

∂x
+ i

∂f

∂y
),

and then, the Cauchy-Riemann condition equivalence if “aréolaire derivative” is
vanished, that means:

∂f

∂z
= 0.

This resuls is very important in investigation in complex analysis and special case
of expand in other ways. There are many authors investigate about “aréolaire
derivative” to solve particular problem, that be mentioned in Theodorescu ([3]),
Angelescu ([4]), Nicolescu ([5]), Moisil ([6c,d]), etc.
The first and more natural extension of the theory of a holomorphic function of a
complex variable is to constructed a holomorphic function theory in several complex
variables. Essentially, that is a mapping

f : Ω ⊂ Cn −→ C,

and satisfying some neccessary conditions. Let zk = xk + iyk, k = 1, 2, ..., n, x =
(x1, ..., xn) ∈ Rn, y = (y1, ..., yn) ∈ Rn, z = (z1, ..., zn) then f(z) = f(z1, ..., zn) =
u(x, y)+iv(x, y). By Hartogs Theorem, we have: f(z) is holomorphic function if and
only if its real-part and imaginary-part are multi-harmonic function and conjugate
each other by Cauchy-Riemann in each variable:

∂u

∂xk
− ∂v

∂yk
= 0

∂u

∂yk
+

∂v

∂xk
= 0,

(3)

where k = 1, 2, ..., n. The condition (3) equivalent with the “aréolaire derivative”
respect to zk be annul, that means:

∂f

∂zk
= 0, k = 1, 2, ..., n.
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When extending the Cauchy-Riemann system in the direction of increasing the num-
ber of functions, equations and variables, the classical methods of complex analysis
does not useful in general. So, there are many authors had tried to find different
ways to expand appropriately for each specific case.

The peoples who have started this way are Theodorescu and Moisil (see [3a] and
[6b,c]). In around 1930-1931, they are investigated the following first-order elliptic
system:



∂u2

∂x1

+
∂u3

∂x2

+
∂u4

∂x3

= 0

∂u1

∂x1

− ∂u3

∂x3

+
∂u4

∂x2

= 0

∂u1

∂x2

+
∂u2

∂x3

− ∂u4

∂x1

= 0

∂u1

∂x3

− ∂u2

∂x2

+
∂u3

∂x1

= 0

(4)

To definition the “aréolaire derivative”, Moisil had presented by matrix:

D(
∂

∂x1

,
∂

∂x2

,
∂

∂x3

) =



0
∂

∂x1

∂

∂x2

∂

∂x3
∂

∂x1

0
−∂
∂x3

∂

∂x2
∂

∂x2

∂

∂x3

0
−∂
∂x1

∂

∂x3

−∂
∂x2

∂

∂x1

0


A column-vector u = (u1, u2, u3, u4) to be called holomorphic-vector in Ω ⊂ R3 if its
“aréolaire derivative” equal to zero in Ω, that means:

D(
∂

∂x1

,
∂

∂x2

,
∂

∂x3

)u = 0. (5)

Theodorescu and Moisil have been presented the integral and Cauchy formula for
those holomorphic-vectors. Bisatze (see [21a,b]) has already investigated the Cauchy
integral type, and then, its continue by Huan-Le-Dy ([7]) and Neldelcu-Coroi ([8]).
Note that, four components of the holomorphic-vector are harmonic functions in R3,
which are associated together by vanishing “aréolaire derivative”.

In 1964, Vinogradov (see [24]) has results namely “About a Cauchy-Riemann anal-
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ogy in 4 dimensional space” by investigated following system

∂u1

∂x1

− ∂u2

∂x2

− ∂u3

∂x3

− ∂u4

∂x4

= 0

∂u1

∂x2

+
∂u2

∂x1

− ∂u3

∂x4

+
∂u4

∂x3

= 0

∂u1

∂x3

+
∂u2

∂x4

+
∂u3

∂x1

− ∂u4

∂x2

= 0

∂u1

∂x4

− ∂u2

∂x3

+
∂u3

∂x2

+
∂u4

∂x1

= 0

(6)

In this system, there are 4 equations with 4 variables, but it is considered in R4,
Vinogradov had the same result as the result in system (4). In order to have a
holomorphic-vector, we must also have four harmonic functions in R4 which associ-
ated together by vanishing “aréolaire derivative”. In particularly, since the number
of variables is 4, so from the investigation of the system (6), Vinogradov had some
“unexpected results” in the holomorphic function respect to 2 complex variables.
With the addition of the number of equations, functions and variables, there are
many new difficulties appear, one suggested an alternative extension: to contructed
the theory of hyper-complex numbers and hyper-complex functions. Started by
Moisil (see [6b, c]) in 1931, this theory has been growing steadily and has many
important applications using the results of Moisil ([6]), Theodorescu ([3]), Nef ([9]),
Sobrero ([10]), Fueter ([11]), Iftimie ([1]), Delanghe ([2]), Goldschmidt ([12]), Gilbert
([13]), Colton ([14]), Sommen ([15]), Brackx ([15]), etc.
Suppose A be a Clifford algebras which has 2n-dimensional with basis elements
e0, e1, ..., en, e1e2, ..., en−1en, ..., e1e2...en. Each basic vector in A can be presented by

eA = ek1ek2 ...ekt

where

A = {k1, k2, ..., kt}, 1 ≤ k1 < k2 < ..., kt ≤ n,

and e0 = eφ.
If a ∈ A then a can be written as a =

∑
A

aAeA, aA ∈ R. When n = 1, we have

A ≡ C, when n = 2, A be Quaternion algebra.
Consider a mapping

f : Ω ⊂ Rn −→ A.

For any x ∈ Ω, we have f(x) =
∑
A

fA(x)eA ∈ A.

From basis elements e1, e2, ..., en we introduce diferential operator

D = e1
∂

∂x1

+ e2
∂

∂x2

+ ...+ en
∂

∂xn
. (7)
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Some time we can also introduce the operator

µ = e0
∂

∂x0

+ e1
∂

∂x1

+ ...+ en
∂

∂xn
.

And then we make a following “aréolaire derivative”:

D(f) =
n∑
i=1

∑
A

eieA
∂fA
∂xi

.

A function f ∈ C1(Ω) to be called a regular in Ω if D(f) = 0 in Ω. Note that,
if f is regular function in Ω then all components fA(x) is harmonic function in
Ω. Therefore, if we have a regular function in Clifford algebras A which has 2n-
dimensional, we need 2n components fA(x) whose associated together by vanishing
“aréolaire derivative”. Most of results for holomorphic function can applied for
regular function, and its also true when we consider about Taylor series, Laurent
series, etc.
In middle in 20th century, Wekua had expanded the theory of holomorphic in another
way: generalized analytic theory (see [20]). He had proven that for any first order
linear elliptic system (with 2 equations and 2 variables) can prescribed by following
canonical system 

∂u

∂x
− ∂v

∂y
+ au+ bv = f

∂u

∂y
+
∂v

∂x
+ cu+ dv = g.

(8)

Denoting W = u+ iv, A =
1

4
(a−d+ ic+ ib), B =

1

4
(a+d+ ic− ib); F =

1

2
(f + ig),

z = x+ iy, the system (8) equivalent the following equation

∂W

∂z
+ AW +BW = F. (9)

If f = g = 0 then we have homogeneous equations and (9) can be presented by

∂W

∂z
+ AW +BW = 0 (10)

where A,B, F ∈ Lp, p > 2.

Vekua had considered “aréolaire derivative”
∂W

∂z
=

1

2
(
∂W

∂x
+ i

∂W

∂y
) in distributional

sense, i.e. Sobolev derivative.
Solution of equation (10) to be called “generalized analytic” function, its has prop-
erties similar holomorphic function. The theory of “generalized analytic” function
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can be applied to solved many problems, i.e. geometry, mechanics. Vekua and Bers
(see [19]) are the pioneers for this research direction and achieve basic results. Many
mathematican used Vekua’s method to constructed the theory of analysis function
repect to several variables by investigating following system

∂W

∂zj
= AjW +BjW,

j = 1, 2, ..., n. Among these authors can be mentioned are Koohara ([16]), Mikhailov
([22]), Palamodov ([23]), Tutschke ([17]),...
In 1982, we had already given method to expanded the Cauchy-Riemann in several
dimensional space. This method, one hand unifies the various extension methods so
far for the C-R system into a common scheme, on the other hand, also creates new
generalized results. These results are presented in 3 chapters:
Chapter 1. Holomorphic vectors in m-dimensional Euclidean space.
Chapter 2. Holomorphic functions taking values in Clifford algebras.
Chapter 3. A classes of first order elliptic system (extension of Vekua method).
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Function Spaces

Ck(Ω): The space of the k-order continuously differentiable functions in

Omega, k ≥ 0 is integer number.

Ck(Ω,A) =

{
f : Ω −→ A|f =

∑
A

fA(x)eA; fA ∈ Ck(Ω)

}
Ck,N(Ω): The space of the column-vectors which has N components, such

that, each component belong to Ck(Ω).

Ck
0 (Ω): The space of the k-order continuously differentiable functions

and which has compact support in Ω.

C∞0 (Ω): The space of the arbitrary-order continuously differentiable

functions and which has compact support in Ω.

Cα(Ω): The space of the Hölder continuously functions in Ω, 0 < α ≤ 1.

Cα,N(Ω): The space of the column-vectors which has N components, such

that, each component belong to Cα(Ω).

H(Ω): Set of holomorphic vectors in Ω.

H(Ω): Set of holomorphic (hyper-complex) functions in Ω.

(Ω)H∗: Set of dual holomorphic (hyper-complex) functions in Ω.

Lp,N(Ω): The Banach space of the column-vectors which has N components,

(p ≥ 1) such that, each component belong to Lp(Ω) with following norm

||f ||Lp,N (Ω) = ||f1||Lp(Ω) + ...+ ||fN ||Lp(Ω).

Llocp,N(Ω): The space of the column-vectors which has N components, such

(p ≥ 1) that, each component belong to Llocp (Ω).

Lp,N2(Ω): The Banach space of the N -order square matrixs which has N

(p ≥ 1) components, such that, each component belong to Lp(Ω) with

following norm

||f ||Lp,N2 (Ω) =
N∑
i=1

N∑
j=1

||fij||Lp(Ω).
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Chapter 1

Holomorphic Vectors in
m-dimensional Euclidean Space

1.1 Matrix D̃(1, 2, ...,m;N) classes

A holomorphic function f(z) = u + iv can equivalent to a vector which has 2
components in R2. Its components satifies linear first-order homogeneous partial
equation (Cauchy-Riemann system)

∂u

∂x
− ∂v

∂y
= 0

∂u

∂y
+
∂v

∂x
= 0

(1.1)

In ([21]), A. V. Bisatze had prescribed “Cauchy-Riemann type in 3-dimensional
Euclidean space” by consider following system

∂q2

∂x1

+
∂q3

∂x2

+
∂q4

∂x3

= 0

∂q1

∂x1

− ∂q3

∂x3

+
∂q4

∂x2

= 0

∂q1

∂x2

+
∂q2

∂x3

− ∂q4

∂x1

= 0

∂q1

∂x3

− ∂q2

∂x2

+
∂q3

∂x1

= 0

(1.2)

(Moisil-Theodorescu system). Since the properties of the solution in Cauchy-
Riemann system is also true with Moisil-Theodorescu system, then the vector
q = (q1, q2, q3, q4) satisfying Moisil-Theodorescu system can be called “holomorphic
vector” in R3.

13
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In 1964, in [24], V-S.Vinogradov had represented “Cauchy-Riemann type in 4-
dimensional space” by investigated following system

∂u1

∂x1

− ∂u2

∂x2

− ∂u3

∂x3

− ∂u4

∂x4

= 0

∂u1

∂x2

+
∂u2

∂x1

− ∂u3

∂x4

+
∂u4

∂x3

= 0

∂u1

∂x3

+
∂u2

∂x4

+
∂u3

∂x1

− ∂u4

∂x2

= 0

∂u1

∂x4

− ∂u2

∂x3

+
∂u3

∂x2

+
∂u4

∂x1

= 0

(1.3)

For each solution of (1.3) has 4 components (u1, u2, u3, u4), its has the same prop-
erties of the solution of Cauchy-Riemann system, so it to be called “holomorphic
vector” in R4.

There are many results which has expanded Cauchy-Riemann system in different
ways (see [1], [2], [12], [15])...

In order to unify many different ways of extending that Cauchy-Riemann system
into a common direction, consistently presenting the same method, and further can
be expanded and generalized, we have a basic comment. As follows: each of these
systems is associated with a square matrix of matrix D̃(1, 2, ...,m;N) which we will
be defined as following (see definition 1.1).

For instance, Moisil-Theodorescu system can be prescribed by following matrix
0 1 2 3
1 0 −3 2
2 3 0 −1
3 −2 1 0

 (1.4)

The number 3 at position which has 3-line and 2-column prescribe that, in the 3th-
equations, derivative of 2th-component respect to x3 which has coeffcient equal to
+1, the number “-1” at position which has 3-line and 4-column prescribe that, in
the 3th-equations, derivative of 4th-component respect to x1 which has coeffcient
equal to -1. (For equations (1.1), (1.2), (1.4) and the system can be investigated in
[1], [2], [‘12],..., all of the coeffcients of the derivatives equal to 1 or -1).

By that denoting, the Cauchy-Riemann system can be presented by following matrix(
1 −2
2 1

)
(1.5)




